

APS360 Project Report:
Real-Time Face Mask Detector

Prepared by

Team 16

Jiachen (Jason) Zhou 1003300545
Yuxuan (Sherry) Chen 1002942587
Zhiwei (Brian) Liu 1003493007
Salar Hosseini 1003142020

Prepared for

Prof. Sinisa Colic and Teaching Team

Dec. 8, 2020

Word Count: 2461

Introduction
The World Health Organization (WHO) dashboard shows that COVID-19 has

globally infected over 60 million people and caused 1.5 million deaths, and is continually
getting worse [1]. The most effective way to combat further spread of viruses is to urge
people to wear face masks in indoor public spaces [2]. Enforcing this health regulation brings
disruptions to work flow for public service providers. Moreover, manual inspection is neither
efficient nor effective and comes with a cost of additional human resources. To assist with the
enforcement, we propose a face mask detection pipeline that is to be deployed on surveillance
systems in public spaces (e.g. airports, shopping malls, etc.) to alert inspectors of any
individuals’ violation of the regulation. Designed for both accuracy and speed, our detector
uses machine learning to localize human faces from a live video feed with bounding boxes
and classify whether they are wearing face masks or not.

As Convolutional Neural Networks (CNNs) are commonly used to tackle object detection
problems, we adopted a deep learning architecture with a CNN backbone to perform
facemask detection. After comparing multiple existing object detection frameworks, we
chose Faster R-CNN [3] for its unequalled detection accuracy. The overall pipeline is shown
in Figure 1.

Figure 1. Illustration of the overall pipeline, consisting of image capture from a video stream,
data preprocessing, and a Faster R-CNN [3] architecture based detector for face masks.

Background
From the literature, Faster R-CNN is a two-stage detector which achieves high

accuracy at a processing speed of ~5 frames/second [3]. It consists of an initial Region
Proposal Network stage which generates possible object regions from a feature map, and a
second stage called a Fast R-CNN detector [4] which simultaneously predicts bounding boxes
and object labels, as shown in Figure 2 [3].

1

Figure 2: The Faster R-CNN object detection model [3].

Another popular model is YOLOv3 [5], a one-stage object detector that has lower accuracies
than Faster R-CNN but faster inference at ~30fps [5]. YOLOv3 model divides the image into
a 2D grid of cells pertaining to possible objects, reduces the spatial dimension to a desired
grid size, and outputs features for a regression layer to predict bounding boxes and class
labels, as shown in Figure 3 [6]. However, YOLOv3 has limitations on the vicinity of objects
due to the grid size restriction.

Figure 3: The YOLO object detection model [6].

Data Processing
The two datasets used are from Kaggle [7][8], as seen in the table below. The first

dataset consists of 4326 annotated images of people wearing various masks, while the second
dataset has 853. The bounding boxes for faces are given for both the datasets, indicating
whether a face is face_with_mask, face_with_mask_incorrect, or face_without_mask. For
dataset 1, there is an additional label of face_other_covering, which we grouped together with
face_without_mask. Since we focus on detecting whether a mask is worn properly, we also
grouped face_with_mask_incorrect into face_without_mask, effectively making it detection
with a binary classification of more balanced classes (face_with_mask vs.
face_without_mask). Dataset 1 also includes labels for mask types and other items, such as
mask_surgical, ski_masks, eyeglasses, etc., which were safely removed.

We used 70% of dataset 1 for training and 15% for validation. For testing, we held out the
remaining 15% of dataset 1 and all of dataset 2, for testing transferability to unseen data.

2

Table 1. Datasets Statistics and Examples of Images and Annotations

Another useful pre-processing step was data augmentation for increasing robustness to scale
and orientation changes of objects. Following the Faster R-CNN [3] approach, we randomly
resized input images by their shortest edge to one of {640, 672, 704, 736, 768, 800} pixels,
and flipped the images horizontally with a 50% probability, as demonstrated in Figure 4.

3

 Class Distribution Data Example

Dataset 1

Positive samples: face_with_mask
Negative samples: face_no_mask, face_other_covering,
face_with_mask_incorrect
(for training, validation, and testing)

Cyan: face_with_mask
Orange: face_with_mask_incorrect
Red: face_without_mask
Blue: mask_surgical (ignored)

Dataset 2

Positive samples: with_mask
Negative samples: without_mask, mask_worn_incorrect
(only for testing)

Cyan: with_mask
Orange: mask_worn_incorrect
Red: without_mask

Figure 4: Raw training image (left) and after a resize to 800px with horizontal flip (right)

Architecture
The final architecture, depicted in Figure 5, is a variation of the Faster R-CNN from

[3] which uses a Feature Pyramid Network (FPN) [9]. YOLOv3 [5] was not considered for its
poor performance for objects in close vicinity, and another one-stage detector, RetinaNet [10]
was experimented with, but yielded lower accuracies and speed.

Figure 5: Faster R-CNN with a FPN backbone [11]

The first stage of the model is the FPN, which has the generic structure shown in Figure 6. It
is composed of a feedforward ResNet-50 encoder [12] (bottom-up pathway) followed by 4
feature maps of increasing scale (top-down pathway) which are produced by upsampling the
previous output by 2x and performing 3x3 convolutions with stride and padding equal to 1.
In addition, there is a skip connection going to each feature map in the top-down pathway
which performs element-wise addition.

4

Figure 6: A Feature pyramid network composed of a bottom-up and top-down pathway [9]

The FPN results in 5 feature maps of increasing scale, which are used to generate region
proposals of sizes {322, 642, 1282, 2562, 5122} respectively. For each feature map, a Region
Proposal Network (RPN) slides a single-stride 3x3 kernel to generate anchor boxes with the
aforementioned areas at aspect ratios of (1:1, 1:2, 2:1) as shown in Figure 7. For each anchor,
the RPN predicts the possibility of it being the background or foreground, as well as the
possible offsets.

Figure 7: The sliding window used in the Region Proposal Network [3].

Then, as depicted in Figure 8, the proposals are sent to a ROI Pooling layer that applies
Max-Pooling on every region to reduce the feature maps to the same size (7x7), and then
sends the channels to a classifier and regressor to detect the occurrence of objects.

Figure 8: Region of Interest (ROI) pooling on region proposals from the RPN, followed by

fully connected layers leading to separate class and bounding box predictions [11].

5

https://medium.com/@arbalestpartners/face-mask-detection-using-cnn-in-python-3148f82dcfe7

We initialized a Detectron2 implementation of the model [13] with pretrained weights on
MS-COCO [14], and fine tuned the network end-to-end on the face mask dataset.

Baseline Model
To construct a baseline model, we replaced the FPN backbone with a simple 2-layer

CNN, as shown in Figure 9. This replaces the 5 feature maps of varying sizes generated by
the FPN with a feature map of fixed size generated by the CNN. Since each feature map
corresponds to one anchor size, the baseline model only has one fixed anchor size. The rest of
the pipeline is the same as our model with the exception that only a single feature map is used
by the RPN to generate region proposals used for classification. The modified pipeline is
shown in Figure 10, where one can see that the baseline model is essentially our model with
key features of the FPN backbone removed. Hence, our baseline model is a suitable candidate
for an ablation study. The Detectron2 configuration is shown in Figure 11.

Figure 9. CNN backbone implementation in Detectron2

Figure 10. Modified pipeline featuring a single feature map with fixed anchor size replacing

the feature maps generated by the FPN [11]

6

Figure 11. Replacing FPN backbone with CNN backbone in Detectron2.

Quantitative Results
During training, the model was trained with the SGD optimizer and evaluated using

the cross entropy loss for class prediction and the smooth L1 loss [15] for bounding box
regression. The resulting combined (added) losses from the training and validation splits of
dataset 1 are shown in Figure 12a and 12b. Figure 12c shows the plot legend with the
hyperparameters that were tuned, where {‘b’, ‘lr’, ‘proposal’, ‘iter’} represent {batch size,
learning rate, number of proposals sampled from the RPN, number of training iterations}
respectively.

Figure 12: (a) Training loss (b) Validation loss (c) Legend with hyperparameter settings

In the same order, the best parameters were found to be {4, 0.0025, 512, 3000}, with the
resulting training curves shown in Figure 13.

Figure 13. Training and Validation Curve for Proposed Model

7

Our holdout data consists of the test split from dataset 1 and all of dataset 2. We evaluated
our trained model on this data with two metrics: mean average precision (mAP) [16] and
inference time. The final results for mAP are calculated using the equations shown below and
are reported in Table 2. The precision-recall curve at 0.5 Intersection over Union (IOU) is
shown in Figure 14. Lastly, the confusion matrix generated by the test set prediction is shown
in Figure 15 and indicates that the model predicted a high number of true positives and
negatives and very few false positives and negatives.

 (1)recision T P / (T P F P) p = +
 (2)ecall T P / (T P F N)r = +

P 1/11 recision(recall) (3)A = ∑

recalli

p i

 (4)AP 1/2 (AP AP)m = with mask + no mask

Table 2: mAP@IOU{0.5, 0.75}

Figure 14. Precision-Recall Curve Figure 15. Confusion Matrix on Test Set

Qualitative Results
We randomly selected several images from the test set to visualize our model’s

performance. In most of the cases, our model is quite robust as it is scale and orientation
invariant. For the images in Figure 16, it is shown that the model successfully localized all
faces present, including those out-of-focused human faces in the background.

8

 mAP@0.5 (%) mAP@0.75 (%) Inference Time
(s/frame)

Faster- RCNN 84.55 71.54 0.07

Figure 16. Test Set Visualization on Model Prediction

However, we acknowledge that there are certain limitations of our model. For instance, in
Figure 17, our model incorrectly classifies other types of face coverings (e.g. bandana, scarf,
etc.) as face masks. This might be caused by the low number of hard negatives in the dataset
(i.e. images including face coverings other than masks), and can be addressed by adding more
occurrences of such negative samples representing different types of face coverings in the
training.

Figure 17. Visualization on Failed Cases

9

Model Evaluation on New Data

To evaluate our model on additional unseen data, we evaluated its performance on a
live video feed. The video feed was captured by screen recording a live Zoom team meeting,
as seen in Figure 18. This ensures that the data being fed to our model for inference is unseen.
Since our model should have the capacity to detect multiple faces, we used a composite of
our webcams to make the problem more difficult. In each frame, our model should detect
four faces and provide label predictions and bounding boxes for each face. For visualization,
we saved the frames labelled by our model to a video for playback.

Figure 18. Video feed sample with class and bounding boxes predictions from model

inference; green bounding boxes indicate the presence of masks.

From the video, we observed that the model was able to consistently provide accurate
predictions and bounding boxes with high confidences of around 90% - 99%. In addition, the
average inference speed per frame was 70ms, which means our model can process ~14
frames per second (fps). Interestingly, despite the presence of sharp transitions between our
webcams, our model can still accurately identify our faces and perform robustly in the
presence of unnatural noise. Moreover, when taking off our masks, our model can quickly
change its prediction when it sees an exposed nose and mouth, even though the mask is not
completely off, as shown in Figure 19. This is desirable as it can allow users to quickly
respond to illegal mask usage.

10

Figure 19. Change of prediction when taking off the masks

However, our model occasionally struggles when a mask is partially worn, as seen in Figure
20. In this example, our model predicted two overlapping faces with contradicting
predictions. The red bounding box correctly predicts a face with incorrectly worn masks,
while the green bounding box incorrectly predicts an additional “face” with a mask on. One
idea to mitigate this is to take the prediction with the highest confidence when we have
instances that have high overlap. However, we need to be careful of overlapping faces if we
take this approach.

.
Figure 20: Partially worn masks caused the model to predict two overlapping faces with

conflicting predictions, each with high confidence

Discussion

In general, our model performed well compared to the baseline model. By inspecting
the predictions made by the baseline (Figure 21), we can easily see that the bounding boxes
do not encompass faces accurately and the class prediction accuracies are around 20-30%,
while our final model generated much more accurate bounding box and class predictions. The
poor performance of the baseline was likely due to the fixed anchor size used, which caused
improper regions of interest to be generated. Furthermore, we observed that without multiple

11

feature layers of varying scales, such as those generated by the FPN network, our model’s
performance would be greatly compromised.

Figure 21: Visualization of Baseline Model Prediction

In addition to the network’s architecture, we learned that initializing our model with the
pretrained weights from the COCO dataset [14] improved the learning efficiency and
robustness of our model. Since the facemask dataset was relatively small, it would achieve
poor accuracy if our model was trained on the dataset from scratch. However, with pretrained
weights loaded, our model could reuse the low-level features learned from COCO [14] and
generalize from the object detection task to the face mask detection task. Leveraging the
learned representations, our model was able to exceed our expectations on the dataset and
live video. For instance, when visualizing our model’s prediction results, we were surprised
to find that our model was able to accurately detect blurry human faces in the backgrounds
that were not even annotated with ground truth labels. In the video demo, we observed that
our model could accurately detect our faces from image composites and performed robustly
in the presence of noise.

Lastly, the model architecture permits high inference speeds without compromising accuracy.
In our demo, our model achieved 14fps on a live video feed, which is desirable for industry
since ~15fps maintains sufficient video quality while minimizing storage costs [17]. Thus,

12

our model should be readily deployable on existing surveillance cameras for real-time
inference.

Ethical Consideration
Our model requires access to surveillance for deployment. This is less of a concern in

areas such as airports where surveillance already exists, but it is unrealistic that one can have
widespread camera coverage in some general public space. Further, one may need to
incorporate additional information, such as geolocation or face recognition, to identify and
track individuals identified as a risk by our system. The need for surveillance and personal
information pose privacy issues. For instance, most data generated or collected by AI
surveillance will not be covered under HIPAA1 [18]. Personal information, such as cell phone
geolocation, that reveal crucial information about COVID19 cannot be used. Even if policies
allowed exceptions for the purpose of healthcare, such privacy violations are unlikely to be
remedied in the aftermath of the pandemic [18]. It will also be important to make our system
robust to differences in skin colour and the presence of traditional attire. To achieve this, we
would need to ensure that our training data is diverse enough so that our model can learn to
be insensitive to these differences.

Challenges Faced
One significant challenge was detecting multiple occurrences of human faces in the

same image with various scales and poses and outputting accurate bounding boxes in addition
to correct labels for each. This makes the problem more difficult than simple classification.
Our model performed quite well in this aspect, mainly as a result of the Faster-RCNN
architecture and its ability to produce ROIs that were close-by or overlapping. The resulting
model beats the baseline by a large margin and it has shown to be robust both quantitatively
and qualitatively. Detecting faces of varying scales and orientations was overcome through
the multi-scale features computed from the feature pyramid network and the augmentation
techniques that were employed. However, there is still room for improvement, as the detector
occasionally misclassified certain types of face coverings as face masks. These issues will
need to be addressed since a high false positive rate could lead to undetected public risks.

Furthermore, since there is usually a tradeoff between performance and speed, it is quite
challenging to achieve real-time inference (>20fps) without compromising the detection
accuracy. Currently, our best model achieves an inference speed of 14fps using 1 GPU,
which would be sufficient to be deployed in most surveillance cameras to perform live
predictions smoothly. To further close the gap, we will explore more light-weight model
variations in order to achieve better real-time inference. Overall, the promising results of our
model makes it on track for real-world deployment.

1 HIPAA: U.S. Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy Rule
offers protection for certain individually identifiable health information

13

References
[1] World Health Organization, “WHO Coronavirus Disease (COVID-19) Dashboard,”.
[Online]. Available:
https://covid19.who.int/?gclid=CjwKCAiA_Kz-BRAJEiwAhJNY7wmse49jTEM2LWRhXe-
-sCPtSDIBU5x0oKnOOPrKvWezx3s7IJnNvhoC0j4QAvD_BwE [Accessed: 6-Dec-2020]

[2] City of Toronto Council, “By-law 541-2020 To impose temporary regulations requiring
the wearing of masks or other face coverings within enclosed public spaces.” Toronto, ON
(2020).

[3] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection
with region proposal networks. In NIPS, 2015.

[4] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision
(ICCV), 2015.

[5] J. Redmon, A. Farhadi. YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In CVPR, 2016.

[7] Kaggle.com. 2020. Face Mask Detection Dataset. [Online] Available:
https://www.kaggle.com/wobotintelligence/face-mask-detection-dataset [Accessed:
18-Oct-2020].

[8] Kaggle.com. 2020. Face Mask Detection. [Online] Available:
https://www.kaggle.com/andrewmvd/face-mask-detection [Accessed: 18-Oct-2020].

[9] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and ´ S. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object
Detection,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017.

[11] . Hui, “Understanding Feature Pyramid Networks for Object Detection (FPN),”.
[Online]. Available:
https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detecti
on-fpn-45b227b9106c [Accessed: 5-Dec-2020].

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
arXiv:1512.03385, 2015.

14

https://covid19.who.int/?gclid=CjwKCAiA_Kz-BRAJEiwAhJNY7wmse49jTEM2LWRhXe--sCPtSDIBU5x0oKnOOPrKvWezx3s7IJnNvhoC0j4QAvD_BwE
https://covid19.who.int/?gclid=CjwKCAiA_Kz-BRAJEiwAhJNY7wmse49jTEM2LWRhXe--sCPtSDIBU5x0oKnOOPrKvWezx3s7IJnNvhoC0j4QAvD_BwE
https://www.kaggle.com/wobotintelligence/face-mask-detection-dataset
https://www.kaggle.com/wobotintelligence/face-mask-detection-dataset
https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/andrewmvd/face-mask-detection
https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c
https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c

[13] Y. Wu, A. Kirillov et al., “Detectron2,” 2019. [Online]. Available:
https://github.com/facebookresearch/detectron2 [Accessed: Nov. 14, 2020]

[14] T.-Y. Lin, M. Maire, et al., “Microsoft coco: Common objects in context,” In European
conference on computer vision, pages 740–755. Springer, 2014.

[15] "SmoothL1Loss — PyTorch 1.7.0 documentation", Pytorch.org, 2019. [Online].
Available: https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html [Accessed:
07- Dec- 2020].

[16] T. C. Arlen, “Understanding the mAP Evaluation Metric for Object Detection,” Medium,
01-Mar-2018. [Online]. Available:
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-det
ection-a07fe6962cf3. [Accessed: 08-Dec-2020].

[17] J. Honovich, "Frame Rate Guide for Video Surveillance", IPVM, 2014. [Online].
Available: https://ipvm.com/reports/frame-rate-surveillance-guide. [Accessed: 07- Dec-
2020].

[18] C. Shachar, S. Gerke and E. Adashi, "AI Surveillance during Pandemics: Ethical
Implementation Imperatives", Wiley Online Library, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/hast.1125. [Accessed: 07- Dec- 2020].

15

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

