UNIVERSITY OF SLIC: Self-Supervised Learning with Iterative Clustering for Human Action Videos
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Motivation: Self-supervised contrastive learning methods for videos typically underperform compared to fully
supervised methods as a result of conservative positive and negative selection.
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= Using iterative clustering to provide pseudo labels for self-supervised learning of video representations.
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= Integrating iterative clustering with multi-view encoding and a temporal discrimination loss to sample harder /

positives and negatives during pretraining.
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= Extract features using a deep 3D CNN and perform FINCH clustering every k epochs in the feature space to £ _ - 5
obtain cluster assignments. N i Sl el —
= The cluster assignments are used as pseudo labels to sample positives and negatives for triplet learning. E ﬂ 3‘ H
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During training, we monitor i) top-k retrieval accuracy, ii) NMI between cluster assignments and ground-truth

= Anchor (z): Clip from a random video instance z;. labels, iii) false positive and negative sample rates from clusters (false according to ground truth labels).
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= Positive (z1): Either (i) a clip from the same instance, :c,j with probability p,, orii) a clip from anther instance in
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Evaluation on Video Retrieval and Action Classification :
Ablation Study

Video retrieval: Given a query video from test set, retrieve k-nearest neighbours from training set.

Temporal Discrimination Loss Action classification: Attach linear classifier on backbone, and evaluate i) linear probing, ii) end-to-end finetuning. UCF101  HMDBo1
T  diserimination | - - < (2). 2+ 0. mo) Clustering Multi-view Temporal Loss R@1 R@5|R@1 R@5
empaoral discrimination 10Ss: = ] r,aug\x),r ;v,msa Method Pretrain  Arch. Frozen UCF HMDB
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= Anchor: Same as instance-based triplet loss. UCE HMDRB CoCLR-RGE  UCE  S3D-23 v 709 391 / X X 547 65611872 415
= Positive: Spatial augmentation of the anchor clip, . ' .
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= Negative: The positive from the instance-based triplet loss, z+ (some temporally non-overlapping clip from CoCLR-RGRB S3D-23 533 4941232 430 v X v 59.2 69.8120.1 43.6
the same video instance or a different instance in the same cluster). TCLR R3D-18 562 720 208 454 %SERLR_RGB BEE éggig ;‘ 2;3 gg; v/ v/ V4 66.7 77.325.3 49.8
= Margin (ms): Chosen such that mg < mq so 2™ is not pushed too far from . SLIC S3D-23 498 792248 520 _ ' ' | | | - - |
' ' ' ' _ Table 3. Ablation study on the impact of different training components, with input size set to 16 x 1282
SLIC R3D-18 71.6 824 28.9 57 8 SLIC UCF R3D-18 X 83.2 545 Yy P g P P
: TCLR K400 R3D-18 X 841 53.6
Supervised SLIC S3D-23 /2.5 /79.1119.1 45.1 g
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SLIC K400 R3D-18 X 83.1 520
Table 1. Nearest neighbour retrieval results on UCF101 and = Proposed a self-supervised, iterative clustering based contrastive learning framework for video
T aug(:r:) 7 HMDBS1. Temporal window: 32 frames. Table 2. Top-1 accuracy results for action classification. ‘Frozen representations.

V' indicates classification with a frozen backbone; ‘Frozen X’

. . . . = Achieved competitive or state-of-the-art performance across various downstream video understanding tasks.
indicates end-to-end finetuning. Temporal window: 32 frames.

IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) 2022, New Orleans {salar.hosseinikhorasgani, yuxuansherry.chenl@mail.utoronto.ca



