

Introduction

Motivation: Self-supervised contrastive learning methods for videos typically underperform compared to fully supervised methods as a result of conservative positive and negative selection.

Contributions:

- Using iterative clustering to provide pseudo labels for self-supervised learning of video representations.
- Integrating iterative clustering with multi-view encoding and a temporal discrimination loss to sample harder positives and negatives during pretraining.

Iterative Clustering

- Extract features using a deep 3D CNN and perform **FINCH clustering** every k epochs in the feature space to obtain cluster assignments.
- The cluster assignments are used as **pseudo labels** to sample positives and negatives for triplet learning.

Instance-based Triplet Loss

Triplet margin loss: $\mathcal{L}_{triplet}(x, x^+, x^-; \theta, m_1) = \max(0, d(f_{\theta}(x), f_{\theta}(x^+)) - d(f_{\theta}(x), f_{\theta}(x^-)) + m_1)$

- Anchor (x): Clip from a random video instance x_i .
- Positive (x^+): Either (i) a clip from the same instance, x_i^+ , with probability p_α or ii) a clip from anther instance in the same cluster, x_i^+ , with probability $(1 - p_\alpha)$.
- Negative (x^{-}) : Clip from a different cluster than x and x^{+} that satisfies $d(f_{\theta}(x), f_{\theta}(x^{-})) \le d(f_{\theta}(x), f_{\theta}(x^{+})) + m_1.$

Temporal Discrimination Loss

Temporal discrimination loss: $\mathcal{L}_{temporal} = \mathcal{L}_{triplet}(x, \operatorname{aug}(x), x^+; \theta, m_2)$

- Anchor: Same as instance-based triplet loss.
- **Positive:** Spatial augmentation of the anchor clip, aug(x).
- Negative: The positive from the instance-based triplet loss, x^+ (some temporally non-overlapping clip from the same video instance or a different instance in the same cluster).
- Margin (m_2) : Chosen such that $m_2 < m_1$ so x^+ is not pushed too far from x.

SLIC: Self-Supervised Learning with Iterative Clustering for Human Action Videos

Salar Hosseini Khorasgani* Yuxuan Chen* Florian Shkurti

^{*}Equal Contribution

University of Toronto Vector Institute

Method Overview

- We sample the RGB clip as the positive with probability p_{β} , or replace it with optical flow with probability $(1 - p_{\beta})$.
- We use a shared encoder for RGB and optical flow.

Evaluation on Video Retrieval and Action Classification

Video retrieval: Given a query video from test set, retrieve k-nearest neighbours from training set. Action classification: Attach linear classifier on backbone, and evaluate i) linear probing, ii) end-to-end finetuning.

		UCF		HMDB	
Method	Arch.	R@1	R@5	R@1	R@5
CoCLR-RGB	S3D-23	53.3	69.4	23.2	43.2
TCLR	R3D-18	56.2	72.2	22.8	45.4
SLIC	S3D-23	69.8	79.2	26.8	52.9
SLIC	R3D-18	71.6	82.4	28.9	52.8
Supervised SLIC	S3D-23	72.5	79.1	19.1	45.1
Supervised SLIC	R3D-18	81.0	84.9	33.0	57.4

Table 1. Nearest neighbour retrieval results on UCF101 ar HMDB51. Temporal window: 32 frames.

Method	Pretrain	Arch.	Frozen	UCF	HMDB
TCLR CoCLR-RGB	UCF UCF	R3D-18 S3D-23	✓ ✓	69.9 70.2	- 39.1
SLIC	UCF	R3D-18	✓	77.7	48.3
CoCLR-RGB TCLR	UCF UCF	S3D-23 R3D-18	× ×	81.4 82.4	52.1 52.9
SLIC	UCF	R3D-18	×	83.2	54.5
TCLR CoCLR-RGB	K400 K400	R3D-18 S3D-23	× ×	84.1 87.9	53.6 54.6
SLIC	K400	R3D-18	×	83.1	52.0

Table 2. Top-1 accuracy results for action classification. 'Frozen \checkmark indicates classification with a frozen backbone; 'Frozen X' indicates end-to-end finetuning. Temporal window: 32 frames.

During training, we monitor i) top-k retrieval accuracy, ii) NMI between cluster assignments and ground-truth labels, iii) false positive and negative sample rates from clusters (false according to ground truth labels).

- representations.

Robot Vision & Learning

Qualitative Evaluation

Evolution of Clustering Quality and Retrieval Accuracy

Ablation Study

			UCF101		HMDB51	
Clustering	Multi-view	Temporal Loss	R@1	R@5	R@1	R@5
×	\checkmark	\checkmark	45.0	62.3	19.5	45.1
\checkmark	×	×	54.7	65.6	18.2	41.5
\checkmark	\checkmark	×	59.9	69.8	19.1	41.1
\checkmark	×	\checkmark	59.2	69.8	20.1	43.6
\checkmark	\checkmark	\checkmark	66.7	77.3	25.3	49.8

Table 3. Ablation study on the impact of different training components, with input size set to 16×128^2 .

Conclusion

Proposed a self-supervised, iterative clustering based contrastive learning framework for video

• Achieved competitive or state-of-the-art performance across various downstream video understanding tasks.