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Abstract

In machine learning, small perturbations applied to images can fool a model into
making confident but incorrect predictions. These adversarial images are often
indiscernible to the human eye, but can cause a model to fail catastrophically. In
this work, saliency maps, namely GradCam, GuidedBackprop, and SmoothGrad,
were used to compare the salient features of the original images from CIFAR-10
and their adversarial counterparts engineered using the Fast Gradient Sign Method
(FGSM). For both untargetted and targetted attacks, quantitative measurements
of similarity demonstrated that GradCam was the most successful at detecting
adversarial inputs. Therefore, we propose that GradCam has the potential to be a
tool for not only visualizing salient features, but also detecting adverserial attacks.

1 Introduction

Machine learning models continue to grow larger and more complex in design, making it increasingly
difficult to understand the intuition behind the computations. Interpretability of neural nets is not
only useful for debugging purposes but is also a key component to exposing potential biases in the
model. Saliency maps have emerged as a promising method to understand what a model considers as
relevant features in the inputs [1]. We propose to use different saliency map methods to understand
the effects of adversarial inputs and how they affect a model’s prediction ability. Adversarial inputs
will be generated for the CIFAR-10 images and we will compare the saliency maps generated by
SmoothGrad [2], GradCAM [3] and GuidedBackprop [4] on raw inputs versus adversarial inputs.
Finding a successful salient model will help improve adversarial input detection and help us gain a
better understanding of interpretability methods applied to machine learning.

2 Related Work

2.1 Explanation & Interpretability Maps

To improve the interpretability of complex CNNs, saliency methods have been developed to highlight
the features that are supposedly most relevant to a network’s prediction. Simonyan et al. showed that
this saliency could be visualized by simply plotting the gradient [5] which is an indicator of how
much changes in each input dimension would change the predictions. Another method, SmoothGrad
[2] reduces the noise from using only the gradient by averaging saliency maps over several inputs
which have Gaussian noise added to them. Expanding on the idea of using gradients for visualization
is GradCam [3], which takes the gradient of the logit for a particular class with respect to the feature
map after the last convolutional layer. This is motivated by the reasoning that the feature maps from
the deeper stages of a CNN capture higher-level visual entities [6] and that the last convolution stage
is the last to retain spatial information. GuidedBackprop [4] takes a different approach and returns
the gradient map obtained by zeroing out negative gradients obtained while backpropagating through
ReLU units. Other notable methods include Gradient � Input [7] and Integrated Gradients [8].
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2.2 Adversarial Inputs

Adversarial inputs [9] are formed by intentionally applying worst-case disturbances to data samples
such that models confidently output incorrect predictions. The Fast Gradient Sign Method (FGSM)
[9] constructs these disturbances as the sign of the gradient of the cost function used to train a neural
network. Furthermore, adversarial inputs can be constructed with the intention to minimize the
probability that the adversarial input results in a correct class prediction (untargetted attack), or to
maximize the probability that the adversarial input results in a target class (targeted attack) [10].

3 Method

To evaluate the various saliency maps, we studied how adversarial examples in the problem domain
of image classification affect the resulting maps. Primarily, a convolutional neural network, namely
AlexNet [11], was used to perform multi-class image classification on the CIFAR-10 images dataset
[12], which has 10 classes. Our approach can be formulated as:

1. Fine-tune an ImageNet-pretrained AlexNet on CIFAR-10 to perform image classification.

2. For each image in the reserved test set, compute class predictions, non-targetted adversarial
examples that fool AlexNet into misclassifying the image, and targetted adversarial examples
that fool AlexNet into predicting each possible class.

3. Compute the saliency maps with respect to the predicted targets of the original input (ie.
real_pred) and corresponding adversarial examples (ie. fake_pred).

4. Analyze the pairs of saliency maps for each method quantitatively (eg. with similarity
metrics) and qualitatively (eg. by considering the features that seem to be learned by the
model).

To visually analyze the effect of an attack, saliency maps were generated using SmoothGrad [2] ,
GradCam [3] and GuidedBackProp [4]. The SmoothGrad explanation is defined in Equation 1, where
noise vectors gi ∼ N (0, σ2) are generated i.i.d. from a normal distribution.
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GuidedBackProp uses a different approach that aims to zero out negative gradients of ReLU units
during backpropagation. Let f l = ReLU(f l−1) and the corresponding intermediate representation
obtained during backpropagation Rl+1 = ∂f out

∂f l+1 . Then with GuidedBackProp, the mask is computed
according to Equation 3, where the indicator function is a mask that keeps only positive gradients and
positive activations.

Rl = 1Rl+1>0 and f l>0R
l+1 (3)

To generate an adversarial prediction, the Fast Gradient Sign Method [9] was used. It is defined in
Equation 4, where the prediction X is generated by adding a fixed perturbation in a direction. For an
untargetted attack, the direction is directly away from the source image and for a targetted attack, the
direction is towards a predetermined (wrong) class label.

XAdversarial = X + ε · sign (∇XJ(X,Y )) (4)
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While evaluating human perception is an active area of research, some well-known quantitative
metrics are Spearman rank correlation, Mean of Structural Similarity Index (mSSIM), Pearson
correlation of histogram of gradients (HoGs) [1]. These metrics were used to quantify the visual
similarities of the true gradients and adversarial gradients.

4 Experiments and Results

4.1 Untargetted FGSM Attack

The saliency maps of an image before and after an adversarial attack were generated using Smooth-
Grad, GradCam and GuidedBackprop. To generate SmoothGrad saliency maps, N = 10 noisy
maps were sampled. It should also be noted that the gradient maps returned by SmoothGrad and
GuidedBackprop were converted to have a single channel (grayscale). This was done to have a
fair quantitative comparison with GradCam which only returns a single channel, and for more clear
visualization. A sample visualization of the different methods on non-targetted adversarial samples
from three different perturbation (ε) levels is shown in Figure 1. Qualitatively, it can be observed that
GradCam generates very coarse saliency maps, while SmoothGrad and GuidedBackprop generate
much more fine-grained maps. As the value of ε increases, it becomes increasingly evident from the
RGB images that an attack is being performed. Furthermore, it is visually clear that the saliency maps
also become more perturbed. For the case of ε = 0.2, the attack is not large enough to deviate the
class prediction, but from only the noise in the image, the saliency maps already change noticeably.
For the case of ε = 0.6, the attack results in an incorrect prediction of ’frog’ and due to taking
gradients with respect to the wrong class, the saliency maps are perturbed even more significantly.

Figure 1: Sample image of a ship image from CIFAR-10 and visualizations of gradients generated
using SmoothGrad, GradCam and GuidedBackpropagation on the original and adversarial images
(ε = 0.2 results in a prediction of ’ship’, and ε = 0.6 results in a prediction of ’frog’). See Figure 3
in the visualization section of the Appendix for full image.

To conduct a quantitative analysis, untargetted FGSM attacks with different perturbations (ε = {0.2,
0.4, 0.6, 0.8, 1.0}) were performed on each image in the test dataset and the saliency maps were
computed on the image before and after the attack. The maps were compared using Spearman rank
correlation, mSSIM and Pearson correlation of HoGs. Lower values from these metrics indicate more
dissimilar saliency maps between the original and attacked images (i.e. more evident attacks), while
higher values indicate less evident attacks. The mean performance on each metric across the entire
dataset is shown in Figure 2.
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Figure 2: Quantified similarities of saliency maps across untargetted FGSM attacks with increasing
level of perturbations.

As the level of perturbation increased, all saliency methods were able to generate increasingly
dissimilar saliency maps which is expected since the adversarial predictions become increasingly
different. Overall, GradCam achieves the lowest similarity across all metrics, achieving a Spearman
correlation of ∼0.1, mSSIM of ∼0.7 and a Pearson correlation of ∼0.3 for its histogram of gradients.
These are all significantly lower than the metrics obtained by other methods, suggesting that GradCam
generates the most dissimilar saliency maps for an image before and after an untargetted FGSM
across all perturbation levels.

4.2 Targetted FGSM Attack

Similar to the quantitative analysis conducted for untargeted adversarial attacks, targeted FGSM
attacks were performed on the entire test dataset across all the different target class labels (10 classes
for CIFAR-10) using a perturbation of ε = 0.4. The mean performance of each saliency method
across all similarity metrics is shown in Table 1.

Table 1: Mean Spearman, mSSIM and Pearson correlation of HoGs achieved by each saliency method
across all class labels used for targeted FGSM attacks.

Adversarial Method Spearman Rank
Correlation

mSSIM Pearson Correlation
of HoGs

SmoothGrad 0.288 0.999 0.495
GradCam 0.0804 0.689 0.298
GuidedBackprop 0.602 0.895 0.668

As shown in Table 1, GradCam achieves the lowest mean similarity across all target classes for each
of the metrics. Notably, it achieves a mean Spearman rank correlation of 0.0804 which indicates
almost no correlation, indicating that GradCam is exceptionally good at detecting a targeted FGSM
attack. Furthermore, an experiment was conducted to compare these correlation metrics across each
of the different target classes, and it was observed that there is little variance in the correlation of the
original and attacked saliency maps across the different classes. This result is shown in Figure 4 in
Appendix D.

5 Conclusion

Adversarial attacks can fool a model into making incorrect predictions with confidence. Having
examined SmoothGrad, GradCam and GuidedBackprop as promising saliency mapping methods to
detect targetted and untargetted FGSM attacks, we have shown that GradCam consistently outperforms
other methods in terms of Spearman rank correlation, mSSIM and Pearson correlation of HoGs.
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A Attribution

Zhi Qi Liu, 1003479354

• Implement Spearman rank correlation, SSIM, Pearson correlation of HoGs
• Write report

Zhiwei Liu, 1003493007

• Implement targetted/untargetted adversarial attacks
• Write report

Salar Hosseini, 1003142020

• Implement GradCam, SmoothGrad, GuidedBackprop
• Write report
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B Source Code

§ Link to pynb file to reproduce experiments.

https://github.com/zqallan/csc413-project
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C Visualizations for Untargetted Attack

Figure 3: Full image of a ship image from CIFAR-10 and visualizations of gradients generated using
SmoothGrad, GradCam and GuidedBackpropagation.
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D Quantitative Metrics for Targetted Attacks

Figure 4: Spearman, mSSIM and Pearson correlation of HoGs achieved by each gradient method
across all class labels used for FGSM attacks.
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