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Abstract

Kronecker-Factored Approximate Curvature (K-FAC) [1] is an approximate second-
order optimization method for deep learning that speeds up the training process
by approximating the Fisher Information Matrix (FIM) which has been shown to
achieve state-of-the-art performance on large-scale neural network optimization
tasks. K-FAC was originally shown to be effective on logistic autoencoders, and
has also been extended to handle convolutional networks [2] and RNNs [3]. For
this project, we apply K-FAC to the MLP-Mixer [4], which is a modern architecture
that consists of only multi-layer perceptrons, then compare its performance with
first order optimizers like SGD with momentum and Adam on CIFAR-10 and
CIFAR-100 image classification tasks. We demonstrate that, when no pretraining
is involved, K-FAC outperforms SGD and Adam on CIFAR-100 and also when
handling large input sizes on CIFAR-10. In addition, we perform learning rate
grafting to confirm that the implicit learning rate schedule is the primary factor
dictating classification performance. 1

1 Introduction

Deep networks have achieved state-of-the-art performance in tasks such as image recognition and
natural language processing. Stochastic Gradient Descent (SGD) and its variants are widely used as
optimizers for neural network training. However, the loss functions of the network parameters are
highly non-convex, and the highly imbalanced curvature on the loss surface limits the efficiency of
first order optimization methods such as SGD. As a result, it typically requires days of training time
to train a top-performing network.

In order to speed up the rate of convergence, second order optimization methods correct the imbal-
anced curvature of the objective function using second-order information. Traditionally, second-order
methods work by inverting a large Hessian matrix (in Newton’s method) or the Fisher Information
Matrix (FIM) (in natural gradient descent), which does not scale well to deep neural networks with
a massive amount of parameters. This has motivated researchers to find invertible approximations
of the Gaussian-Newton Hessian or the Fisher Information Matrix which are faster to compute. For
instance, Adagrad [5], Adam [6], and RMSProp [7] involve a simple diagonal approximation to the
covariance matrix of the gradients. In order to preserve correlations between parameters, TONGA [8]
proposed a block-diagonal approximation of the empirical FIM. A similar block-diagonal approach
is proposed by [9] that approximates the standard FIM instead of the empirical FIM.

In addition, factored approximations, such as K-FAC [1], approximate various large blocks of the
FIM as the Kronecker product of two smaller matrices, which can be estimated and inverted with a
reduced computational cost.

Previous works have shown that K-FAC can be applied to fully-connected layers [1], convolutional
networks [2], and recurrent neural networks [3]. In this work, we extend K-FAC to the MLP-
Mixer [4] and evaluate the approximation against classical gradient descent methods on several image

1Code is available at https://github.com/Salarios77/kfac-mlp-mixer



classification tasks. In addition, we (i) further analyze the effectiveness/ineffectiveness of K-FAC on
MLP-Mixers by performing grafting [10] (using SGD as the second optimizer) to disentangle the
effect of the magnitude and direction imposed by the K-FAC weight updates, and (ii) compare the
performance acquired by finetuning a pretrained MLP-Mixer using K-FAC against that of SGD and
Adam [6].

2 Related Works

2.1 Approximate second order optimization

Natural Gradient Descent (NGD) is an optimization method proposed by [11] that approximates the
curvature of a loss function using the Fisher Information Matrix (FIM). However, due to the massive
number of parameters in neural networks, the inverse of the FIM is intractable, which makes NGD
impractical for deep learning applications.

Many recent works have proposed various methods to approximate second-order optimization. K-
FAC [1] is one of the most efficient natural gradient approximation methods that approximates the
FIM such that the inverse is easier to compute. First, K-FAC block-diagonalizes the FIM where
each diagonal block corresponds to parameters of each layer of the neural network. Next, K-FAC
approximates each block with the Kronecker product of two matrices. Lastly, K-FAC uses the
property of the Kronecker product of matrices to compute the inverse of the FIM.

2.2 MLP-Mixer

Convolutional neural networks and attention-based networks such as the vision transformer have
become popular for image classification tasks. However, it has been shown in [4] that neither
convolutions nor attention are necessary for good performance. [4] proposed an architecture, MLP-
Mixer, which only relies on multi-layer perceptrons (MLPs). MLP-Mixer consists of per-patch linear
embeddings, mixer layers, and a classifier head. Mixer layers contain a token-mixing MLP for
spatial information learning and a channel-mixing MLP for per-location features, each including
2 fully-connected layers and a GELU [12] non-linear activation with standard skip-connections
and layer normalization. The model is pretrained using the Adam optimizer [6] and fine-tuned for
downstream tasks using SGD with momentum.

2.3 Disentangling step size from direction

One instance of methods which precondition the SGD update by another matrix is the class of
adaptive gradient methods. In an attempt to disentangle the effect of adaptive gradient methods on the
magnitude and direction of weight updates, Agarwal et. al [10] introduced "learning rate grafting".
This method works by querying the direction for the gradient update from one optimizer, and the
magnitude from another. Since K-FAC preconditions the SGD update with an approximation of
a neural network’s Fisher Information Matrix, its effect on the magnitude and direction can also
be disentangled to provide further insights on its effectiveness/ineffectiveness when training the
MLP-Mixer.

3 Methodology

This section describes our primary contribution: apply K-FAC [1] as the natural gradient approxima-
tion method in training MLP-Mixer [4] models on CIFAR [13] image classification tasks.

3.1 MLP-Mixer Network Architecture

For MLP-Mixer to perform classification tasks on image data, it takes as an input a sequence of S non-
overlapping patches dividing the input image of size (H,W ). Each image patch, of resolution P ×P
is projected to a vector of hidden dimension C via a linear layer, resulting in a two-dimensional input
table X ∈ RS×C where sequence length is determined by S = H

P
W
P = HW

P 2 . As shown in Figure
1, MLP-Mixer consists of multiple Mixer layers, each containing two MLP blocks that operates
along one dimension of the input table X respectively. The first one acts on columns of X to achieve
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Figure 1: Overall architecture of MLP-Mixer [4] and illustration of K-FAC [1]

token-mixing; the second acts along the rows as a per-location channel-mixing MLP. The use of these
two types of layers enables interaction of both input dimensions. Each Mixer layer can be expressed
in the following Eqn. 1 and Eqn. 2:

U∗,i = X∗,i +W2σ(W1LN(X)∗,i), for i = 1 . . . C, (1)

Yj,∗ = Uj,∗ +W4σ(W3LN(U)j,∗), for j = 1 . . . S. (2)

where σ is an element-wise GELU [12] non-linearity and the summation represents skip-connections.
Apart from the MLP layers, the classification head is a standard global average pooling layer followed
by another linear classifier layer.

3.2 K-FAC

Kronecker-Factored Approximate Curvature (K-FAC) [1] is a second-order optimization method
which approximates the curvature of loss function by Kronecker factorization that helps reduce
the computation complexity of the natural gradient update. Such computational burden comes
from inverting the Fisher Information Matrix (FIM) used by Natural Gradient Descent [11]. The
FIM of a probabilistic model that outputs a conditional probability of target y given data x and
model θ is defined as Fθ = E(x,y)[∇logp(y|x; θ)∇logp(y|x; θ)T ]. In an image classification task,
it is common to use the mean value of the negative log-likelihood as the loss function, defined as
L(θ) = E(x,y)[−logp(y|x; θ)]. Furthermore, one can show the Hessian of L(θ) as Eqn. 3:

H(L)(θ) = ∇2E(x,y)[−logp(y|x; θ)] = Fθ − E(x,y)[
∇2p(y|x; θ)
p(y|x; θ)

] (3)

Hence, the update rule is θ(t+1) = θt − ϵF−1
θ(t)∇E(θ(t)) that requires the inverse of the FIM. Since

FIM is a matrix of size N ×N where N is the number of parameters whose order of magnitude is
often around millions in a typical deep neural network, the inverse of FIM becomes intractable in
NGD [11].

Following [1], we first block-diagonalize the FIM in which parameters of each layer lie along the
diagonal blocks as indicated in Figure 1. Next, K-FAC [1] factorizes each block by the Kronecker
product of two matrices, using the matrix inversion property of the Kronecker product, (A⊗B)−1 =
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A−1 ⊗ B−1. Therefore, each diagonal block in the F−1
θ can be expressed as the product of two

smaller Kronecker factors, reducing the computation complexity.

In specific, we show derivation on a fully-connected layer since MLP-Mixer [4] only con-
sists of multi-layer perceptrons. The Fisher block in the i-th layer has the expression Fi =
E[∇ilogp(y|x; θ)∇ilogp(y|x; θ)T ]. During the back propagation, we factorize gradient of the log
likelihood as ∇ilogp(y|x; θ) = gi ⊗ ai−1, where ai−1 ∈ Rdi−1 is the activation output from the

previous (i − 1) layer, and gi =
∂logp(y|x;θ)

∂wi
∈ Rdi is the gradient of the output of the i-th layer.

Putting together, the Fisher block can be transformed into the following:

Fi = E[∇ilogp(y|x; θ)∇ilogp(y|x; θ)T ] = E[(gi ⊗ ai−1)(gi ⊗ ai−1)
T ] (4)

Using the matrix transpose property of the Kronecker product on Eqn. 4, (A⊗ B)T = AT ⊗ BT ,
we arrive at:

Fi = E[(gi ⊗ ai−1)(g
T
i ⊗ aTi−1)] = E[gigTi ⊗ ai−1a

T
i−1] (5)

By applying the K-FAC approximation on Eqn. 5, we can push the expectation inwards and get a
Kronecker product of expected values shown as Eqn. 6:

Fi ≈ E[gigTi ]⊗ E[ai−1a
T
i−1] = Gi ⊗Ai−1 (6)

where Fi ∈ R(di−1di)(di−1di), Gi ∈ Rdidi and Ai−1 ∈ Rdi−1di−1 .

4 Experimental Setup

4.1 Datasets

The datasets that we perform training and evaluation on are the CIFAR-10 [13] and CIFAR-100
[13] image classification datasets, both of which contain 32x32 colour images and class labels. The
CIFAR-10 dataset has 50000 training images and 10000 testing images, consisting of 10 image
classes. The CIFAR-100 dataset has the same number of training and testing images, except with 100
image classes (500 training images and 100 testing images per class). The data augmentations that
we perform for both datasets are random horizontal flip (only during training) and normalization with
fixed mean and standard deviation. In addition to the base image size of 32x32, we also experiment
on 224x224 images as it provides a higher dimensional input space to test optimization on, and since
it is the size that the MLP-Mixer [4] was originally trained on. To upsample the images, we follow
the procedure used in [4] and first resize the images to 256x256 using bilinear interpolation and then
take a 224x224 central crop.

4.2 Model Configuration

We perform training with 5 different specifications of the MLP-Mixer architecture which are presented
in Table 1. Following [4], we denote each model by their size "S" for small and "B" for base, followed
by the patch size. For 32x32 images we use a patch size of 4, and for 224x224 images we use a
patch size of 16. The only architecture which we additionally test the pretrained (on ImageNet[14])
version is B/16, since that is the only one from this list for which [4] has made a pretrained checkpoint
publicly available. It is worth mentioning that B/16-PT was pretrained using Adam [4].

Table 1: MLP-Mixer architecture specifications used for training on CIFAR-10 and CIFAR-100.

Model Specification S/4 B/4 S/16 B/16 B/16-PT
Input image size 32 x 32 32 x 32 224 x 224 224 x 224 224 x 224
Patch resolution 4 x 4 4 x 4 16 x 16 16 x 16 16 x 16
Hidden size C 512 768 512 768 768
Pretraining N/A N/A N/A N/A ImageNet[14]
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4.3 Training Details

For all experiments, we perform training over 100 epochs with one GPU and a batch size of 64.
The optimizers which we compare against K-FAC are SGD with momentum and Adam [6]. For all
optimizers, we set momentum to 0.9. For weight decay, we tested values {1e-3, 1e-4} and found 1e-4
to work best for all optimizers. For learning rate, we tested values {1e-2, 1e-3} and found that SGD
worked best with a learning rate of 1e-2, while Adam and K-FAC worked best with a learning rate of
1e-3. For K-FAC, we used a damping value of 1e-3. For additional hyperparameters, please refer to
the code provided.

5 Experimental Results

In this section we provide the image classification results on CIFAR-10 and CIFAR-100 from
training MLP-Mixer models using SGD with momentum, Adam, and K-FAC. In order to evaluate
the performance of each optimizer we report the best top-1 accuracy on the test set, and the number
of epochs taken to reach a target test accuracy. The target test accuracies are mostly arbitrary, and
were roughly chosen based on the average performances of the three optimizers. These values are
provided in the captions of the results tables in the following sections. The epochs to target metric is
only provided to give a rough sense of how fast each optimizer converged.

5.1 Optimizer Results on CIFAR-10

The results for image classification on CIFAR-10 are presented in Table 2, and the training results are
shown in Figure 3 and 2. Upon examining the performances on models with input sizes of 32x32 (S/4
and B/4), it is evident that all three optimizers perform similarly in terms of best test accuracy and
number of epochs to reach target test accuracies. This indicates that optimizing the smaller images
is equally challenging for all three optimizers. However, the results (without pretraining) on the
larger input sizes of 224x224 indicate a greater discrepancy between the performances of the three
optimizers. For both S/16 and B/16, K-FAC results in the best performance, followed by SGD and
then Adam. This holds true for both test accuracy and convergence speed (epochs to target). We
suspect that the improvement of K-FAC here is due to the optimization problem becoming more
difficult (i.e. a more imbalanced curvature in the loss landscape) when the small 32x32 image pixels
are stretched and it becomes harder to detect the object boundaries.

Lastly, we examine the performance of the three optimizers on finetuning a model with input size
224x224 which is pretrained on ImageNet (B/16-PT). For this setting, we notice that SGD significantly
outperforms Adam and K-FAC and reaches the target test accuracy within the very first epoch, while
K-FAC takes 40 epochs to reach it, and Adam significantly underperforms and does not reach the
target accuracy. This is a surprising result as B/16-PT was originally pretrained using Adam and
was expected to perform well when finetuned using the same optimizer. However, in Section 5.2, we
show that a consistent result holds for CIFAR-100.

Table 2: The Top-1 classification accuracy and epochs to target accuracy (both on test set)
from training MLP-Mixer models on CIFAR-10 using SGD with momentum, Adam, and K-FAC.
The target test accuracies for {S/4, B/4, S/16, B/16, B/16-PT} are {80%, 80%, 70%, 65%, 90%}
respectively. ‘Pretrained ✓’ indicates the model was initialized using a checkpoint pretrained on
ImageNet[14]; ‘Pretrained ✗’ indicates random initialization. "-" indicates that the target test accuracy
was not reached.

Model Input Size Pretrained Test Accuracy Epochs to Target

SGD Adam K-FAC SGD Adam K-FAC

S/4 322 ✗ 83.22 80.88 82.42 38 43 35
B/4 322 ✗ 82.73 80.9 82.81 40 42 40

S/16 2242 ✗ 74.64 71.99 80.44 11 15 3
B/16 2242 ✗ 72.68 67.09 79.02 6 10 2

B/16-PT 2242 ✓ 96.73 72.24 91.00 0 - 40
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Figure 2: Test results of MLPB16 and MLPS16 on CIFAR-10

Figure 3: Test results of MLPB4 and MLPS4 on CIFAR-10

5.2 Optimizer Results on CIFAR-100

Here we perform similar experiments to Section 5.1, except on the CIFAR-100 dataset, which is
expected to be more difficult to optimize due to its higher number of classes. We only use the "B"
(base) models for CIFAR-100, but it would be interesting to experiment on different model sizes in
future work. Our results are shown in Table 3 and Figure 4. As shown from the training results on
the 32x32 and 224x224 input sizes (without pretraining), K-FAC significantly outperforms SGD and
Adam in terms of best test accuracy and epochs to target test accuracy. This is consistent with the
CIFAR-10 results on 224x224 images, but now also holds true for 32x32 images (on CIFAR-10 the
three optimizers performed equally well on 32x32 images). When examining the finetuning results
on the pretrained B/16-PT model, we find that SGD significantly outperforms Adam and K-FAC and
reaches the target test accuracy within the first epoch. This is very a similar result to that shown in
Table 2 when performing finetuning on CIFAR-10.

Table 3: The Top-1 classification accuracy and epochs to target accuracy (both on test set) from
training MLP-Mixer models on CIFAR-100 using SGD with momentum, Adam, and K-FAC. The
target test accuracies for {B/4, B/16, B/16-PT} are {45%, 40%, 70%} respectively. ‘Pretrained ✓’
indicates the model was initialized using a checkpoint pretrained on ImageNet-1K; ‘Pretrained ✗’
indicates random initialization. "-" indicates that the target test accuracy was not reached.

Model Input Size Pretrained Test Accuracy Epochs to Target

SGD Adam K-FAC SGD Adam K-FAC

B/4 322 ✗ 53.67 48.04 60.59 10 11 3

B/16 2242 ✗ 47.65 42.71 54.96 6 7 3

B/16-PT 2242 ✓ 83.49 45.37 70.81 0 - 41
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Figure 4: Test results of MLPB16 on CIFAR-100

5.3 Learning Rate Grafting using K-FAC and SGD

In this section we conduct a deeper analysis on the difference between the SGD and K-FAC optimiza-
tion results obtained on CIFAR-10 (shown in Table 2) by performing learning rate grafting [10]. We
only examine the models which resulted in notable differences in performance (i.e. S/16, B/16, and
B/16-PT) across the different optimizers, and attempt to understand whether the improvement of the
best optimizer came from the magnitude or direction of the gradient steps.

In Table 4, we show the grafting training results for optimizer pairs (M, D), where optimizer M
determines the step magnitude and optimizer D determines the step direction. It is also worth noting
that no extra hyperparameter tuning was necessary for these experiments and each optimizer was set
up with the same settings detailed in Section 4.3. Each row of the tables for each model controls for
the implicit step size schedule (magnitude), while each column of the tables isolates preconditioning
dynamics (direction). From examining the results for all three models, we can observe that there
is very little difference in the performance within each row, while there is a clear difference within
each column. This result is consistent with the finding of [10] and shows that the primary factor
determining classification performance is the implicit step size schedule. In other words, K-FAC
outperforms SGD for S/16 and B/16 mainly due to finding better step sizes, and likewise for SGD on
B/16-PT.

Table 4: Top-1 classification accuracy (on test set) from training MLP-Mixer models on CIFAR-
10 using learning rate grafting, where the magnitude of M’s step is combined with the direction
of D’s step. Choices for optimizers (M, D) are combinations of SGD with momentum and K-FAC.
Grafting (A, A) is equivalent to simply running A.

Model S/16
M\D SGD K-FAC

SGD 74.64 75.47

K-FAC 80.45 80.44

Model B/16
M\D SGD K-FAC

SGD 72.68 75.44

K-FAC 78.86 79.02

Model B/16-PT
M\D SGD K-FAC

SGD 96.73 95.92

K-FAC 90.75 91.00

6 Limitations

One limitation of our method is that we haven’t conducted extensive hyper-parameter tuning on all
three optimizers. From the results, we can see that the Adam optimizer underperforms by a noticeable
margin in all experiments. This could be due to the fact that the hyper-parameters for Adam optimizer
are not well-tuned. For future work, we could conduct a more rigorous grid-search to find the best
combination of hyper-parameters.

In addition, we could further improve the practicality of K-FAC for use in deep learning by applying
it to more modern architectures such as Auto-Encoders [15] and Tansformers [16], then investigate
the effectiveness of K-FAC by comparing with other optimizers on those architectures.
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7 Conclusions

In this paper, we applied K-FAC to the MLP-Mixer, and evaluated on CIFAR-10 and CIFAR-100.
We showed that K-FAC results in the best performance on both datasets in terms of classification
accuracy and convergence rate using the B/16 and S/16 MLP-Mixer architectures without pre-training.
In addition, we investigated the performance of learning rate grafting on the MLP-Mixer using SGD
and K-FAC as the optimizer pair, and confirmed that the implicit step size is the primary factor that
dictates the classification performance.

8 Work Division
1. Set up data-loading for the CIFAR-10 and CIFAR-100 datasets [17]. (Sherry)
2. Extend K-FAC to the MLP-Mixer architecture. (Sherry, Salar, Jason)
3. Train the MLP-Mixer on both datasets using K-FAC. (Sherry, Salar, Jason)
4. Compare the performance of K-FAC against SGD with momentum and ADAM. (Sherry,

Salar, Jason)
5. Disentangle the effect of K-FAC weight updates by performing grafting using SGD as the

second optimizer. (Salar)
6. Evaluate the optimization performance of K-FAC on fine-tuning a MLP-Mixer that was

pretrained using a larger dataset. (Sherry, Salar)
7. Write report. (Sherry, Salar, Jason)
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